
Page 1 of 50 

 

 

 

University Of Pune 

 

 

 

 

Data Structures Using C & Object Oriented 

Programming Concepts Using C++ 

S. Y. B. Sc. (Computer Science)  

CS -223 

SEMESTER I & II 

 

 

 

Name ______________________________________________________ 

 

College Name ______________________________________________ 

 

Roll No. ______________________ Division _____________________ 

 

Academic Year ____________  



Page 2 of 50 

 

 

Prepared By 

Dr. Shailaja C. Shirwaikar  

Head, Dept of Comp Sc, Nowrosjee Wadia College 

Reviewed By 

Ms. Poonam Ponde 

Ms. Jyoti Yadav 

Mrs. Shubhangi Page 

Mrs. Chitra Nagarkar 

 

Preface 

This Lab Book supplements the text books and classroom teaching of Data structures and 

C++. The intention is to bring uniformity in conducting the lab sessions across various 

affiliated colleges. The assignments are designed so that the theory concepts in the 

syllabus are broadly covered. There is scope for improvement and additions and deletions 

can be carried out as the Lab book is always going to remain in digital form and available 

on the Department of Computer Science, University of Pune, website. I am indebted to all 

the reviewers of the book as their valuable suggestions have improved the book contents. 

We are all indebted to Dr. Vilas Kharat, Chairman, Board of studies in Computer Science 

for continuous encouragement, support and guidance. 

 

Dr. Shailaja C. Shirwaikar  

Member, BOS Computer Science 

 

  



Page 3 of 50 

 

Table of contents 

Introduction .....................................................................................................................4 

Assignment Completion sheet...……………………………………………………………..7 

Assignment 1....................................................................................................................9 

Sorting Algorithms – Bubble sort, Insertion Sort 

Assignment 2....................................................................................................................11 

Recursive Sorting Algorithms – Quick sort, Merge Sort 

Assignment 3....................................................................................................................12 

Searching Method-Linear search, Binary search 

Assignment 4....................................................................................................................13 

Stack -Static/Dynamic stack implementation 

Assignment 5....................................................................................................................15 

Static and Dynamic Queue Implementation – Linear Queue, Circular queue 

Assignment 6....................................................................................................................17 

Linked List - Dynamic implementation of Singly, Doubly and Circular Linked List. 

Assignment 7....................................................................................................................19 

Tree - Binary Search Tree Traversal: Create, add, delete, and display nodes. 

Assignment 8....................................................................................................................20 

Graph - Adjacency matrix to adjacency list conversion, in degree, out degree  

Case Studies on Data Structures ...................................................................................21 

Assignment 9....................................................................................................................26 

Class, Object and methods implementation 

Assignment 10..................................................................................................................30 

Constructor: Copy Constructor, Default Constructor, Parameterized Constructor 

Assignment 11..................................................................................................................32 

Memory Allocation: new and delete operators, dynamic constructor 

Assignment 12..................................................................................................................33 

Inline function, friend function, default argument, 

Assignment 13.................................................................................................................. 36 

Function Overloading. 

Assignment 14..................................................................................................................38 

Operator overloading. 

Assignment 15..................................................................................................................42 

Inheritance: Single, multiple, multilevel, hierarchy, Constructor and destructor in derived class 

Assignment 16..................................................................................................................44 

File Handling: Updation of files using random access 

Case Studies in C++ ........................................................................................................45 

Attachment List................................................................................................................50 

Bibliography.....................................................................................................................50 



Page 4 of 50 

 

Introduction  

1. About the work book 

This workbook is intended to be used by S. Y. B. Sc (Computer Science) students for the 
Data structures using C Lab course in Semester I and for the Object Oriented 
Programming Concepts using C++ Lab course in Semester II. Data structures is an 
important core subject of computer science curriculum, and hands-on laboratory 
experience is critical to the understanding of theoretical concepts studied as part of this 
course. Study of any programming language, including C++, is incomplete without hands-
on experience of implementing solutions using programming paradigms and verifying them 
in the lab. This workbook provides rich set of problems covering the basic algorithms as 
well as numerous computing problems demonstrating the applicability and importance of 
various data structures and related algorithms. The programming exercises in C++ are 
designed to demonstrate the applicability of Object Oriented programming concepts to 
problem solving. 

The objectives of this book are 

1) Defining clearly the scope of the course 

2) Bringing uniformity in the way the course is conducted across different colleges 

3) Continuous assessment of the course 

4) Bring in variation and variety in the experiments carried out by different students in 
a batch 

5) Providing ready reference for students while working in the lab 

6) Catering to the need of slow paced as well as fast paced learners 

2. How to use this workbook 

The workbook is divided into two sections. Section I is related to Assignment in Data 
structures and are to be solved using C programming language while Section II relates to 
assignments to be solved in C++ programming language. 

The Data Structures syllabus is divided into eight assignments. Each assignment has 
problems divided into three sets – A, B and C 

Set A is used for implementing the basic algorithms or implementing data structure along 
with its basic operations. Set A is mandatory. 

Set B is used to demonstrate small variations on the implementations carried out in set A 
to improve its applicability. Depending on the time availability the students should be 
encouraged to complete set B. 

Set C prepares the students for the viva in the subject. Students should spend additional 
time either at home or in the Lab and solve these problems so that they get a deeper 
understanding of the subject. 

Case studies at the end of the Section form the essence of the lab Book. Students should 
solve the case studies to become skilled programmers. Each problem given as a case 



Page 5 of 50 

 

study can be tackled in multiple ways. Multiple data structures and use of more than one 
algorithm may be used in solving these problems. At least four case studies, amongst the 
one star marked or chosen by the instructor should be solved as part of work completion. 

Some code snippets are also provided which can be used to generate, read or write data. 
Some text files are provided as attachments with the digital copy of the lab book which can 
be used as data files. 

The C++ syllabus is also divided into eight assignments. Each assignment has problems 
divided into three sets – A, B and C 

Set A is used for demonstrating the C++ concept and knowing the essential syntax to 
implement it. Set A is mandatory. 

Set B is used to demonstrate small variations on the implementations carried out in set A 
to improve its applicability. Depending on the time availability the students should be 
encouraged to complete set B. 

Set C prepares the students for the viva in the subject. Students should spend additional 
time either at home or in the Lab and solve these problems so that they get a deeper 
understanding of the subject. 

Case studies at the end of the Section combine concepts learned in the previous 
assignments so that varieties of concepts are used to tackle a single problem. Students 
should solve the case studies to become skilled programmers. 

2.1 Instructions to the students 

Please read the following instructions carefully and follow them. 

1) Students are expected to carry this book every time they come to the lab for computer 
science practicals. 

2) Students should prepare oneself before hand for the Assignment by reading the 
relevant material. 

3) Instructor will specify which problems to solve in the lab during the allotted slot and 
student should complete them and get verified by the instructor. However student should 
spend additional hours in Lab and at home to cover as many problems as possible given 
in this work book. 

4) Students will be assessed for each exercise on a scale from 0 to 5 
           i)  Not done              0 
           ii) Incomplete            1 
           iii) Late Complete     2 
           iv) Needs improvement     3 
           v) Complete              4 
           vi)  Well Done      5 
  
2.2. Instruction to the Instructors 

1) Explain the assignment and related concepts in around ten minutes using white board if 
required or by demonstrating the software. 



Page 6 of 50 

 

2) Make available to students digital copies of text files provided with the book as per the 
requirement of Assignment, 

3) Choose appropriate problems to be solved by students. Set A is mandatory. Choose 
problems from set B depending on time availability. Discuss set C with students and 
encourage them to solve the problems by spending additional time in lab or at home. 

4) Make sure that students follow the instruction as given above. 

5) Choose at least 4 case studies to be solved by each student and evaluate them. 
Different students can be given different case studies so that class as a whole has solved 
all of them. Encourage students to discuss their solutions with their peers 

6) You should evaluate each assignment carried out by a student on a scale of 5 as 
specified above by ticking appropriate box.  

7) The value should also be entered on assignment completion page of the respective Lab 
course. 

2.3. Instructions to the Lab administrator 

You have to ensure appropriate hardware and software is made available to each student. 

The operating system and software requirements on server side and also client side are as 
given below: 

1) Server and Client Side - (Operating System) Fedora Core Linux 

2) Server side and Client Side - editor and GCC compiler 

 

  



Page 7 of 50 

 

Assignment Completion Sheet 

 

Lab Course I 

Section I - Data structures using C 

Sr. 
No 

Assignment Name  Marks 
(out of 5) 

Signature 

1 Sorting Algorithms – Non – Recursive   

2 Sorting Algorithms – Recursive   

3 Searching Algorithms   

4 Stack   

5 Queue   

6 Linked List   

7 Tree    

8 Graph   

9 Case study 1   infix to postfix /   

10 Case Study 2  postfix evaluation /   

11 Case study 3   Polynomial Addition /   

12 Case study 4   DFS / BFS /   

Total ( out of 60 )    

Total (Out of 10)   

 

  



Page 8 of 50 

 

Lab Course I 

Section II – Object Oriented Programming Concepts using C++ 

Sr. 
No 

Assignment Name  Marks 
(out of 5) 

Signature 

1 Class , Object and methods implementation   

2 Constructor: Copy Constructor, Default 
Constructor, Parameterized Constructor 

  

3 Memory Allocation: new and delete operators , 

dynamic constructor 

  

4 Inline function, friend function, default argument,   

5 Function Overloading.   

6 Operator overloading.   

7 Inheritance: Single, multiple, multilevel, hierarchy, 

Constructor and destructor in derived class 

  

8 File Handling: Updation of files using random 
access 

  

9 Case study 1      

10 Case Study 2     

Total ( out of 50 )    

Total (Out of 10)   

  

This is to certify that Mr/Ms _______________________________________________ 

has successfully completed the course work for Lab Course I and has scored ___ 

Marks out of 20. 

 

Instructor      Head, Dept. Of Comp. Sc.  

        

 

 

Internal Examiner     External Examiner   



Page 9 of 50 

 

Section I - Data structures using C 

Assignment 1: Sorting Techniques (Non recursive)  

Sorting techniques considered here are internal sorting techniques. The data to be sorted 

is in memory usually in an array. It could be an array of integers, characters, strings or of 

defined structure type.  To test a sorting algorithm we require large data set. Data is 

generated using random (rand()) function. The array of random integers in the range 0 to 

99 is generated by using following code:  

void generate ( int * a , int n)  

{  int i; 

for (i=0; i<n; i++) a[i]=rand()%100; 

} 

In reality data to be sorted is externally stored in files. One need to read data from files and 

bring it into memory in an array before sorting and sorted array also need to be written 

back to an external file. 

Suppose the records to be sorted containing name, age and salary of a set of employees, 

is in a text file “employee.txt” as follows: 

Rajiv 43 100000 

Prakash 34 29000 

Vinay 35 20000 

.................................. 

The data is read into memory in an array of structures as follows 

Variable 
declarations & 
main program 

Function for reading from  a file  Function for writing to a file 

typedef struct{ 
char name[30]; 
int age; 
int salary; 
}RECORD; 
RECORD 
emp[100]; 
main() 
{int n; 
n=readFile(emp); 
sort(emp,n); 
writeFile(emp,n); 
} 

int readFile(RECORD *a)  
{int i=0;  
 FILE *fp;  
if((fp=fopen("emp.txt","r"))!=NULL)  
while(! feof(fp))  
{  
fscanf(fp,"%s%d%d", a[i].name, 
&a[i].age, &a[i].salary);  
i++;  
}  
return i-1; // number of records 
read 
}  
 

void writeFile(RECORD *a, int n)  
{int i=0;  
FILE *fp;  
if((fp=fopen("sortedemp.txt","w"))!=NULL)  
for(i=0;i<n; i++)  
fprintf(fp,"%s\t%d\t%d\n", a[i].name, 
a[i].age, a[i].salary);  
}  
 

 



Page 10 of 50 

 

The sorting algorithms you are to use in this assignment are bubble sort and insertion sort.  

 

Set A  

a) Sort a random array of n integers (accept the value of n from user) in ascending order 

by using bubble sort algorithm. 

b) Sort a random array of n integers (accept the value of n from user) in ascending order 

by using insertion sort algorithm. 

Set B 

a) Read the data from the file “employee.txt” and sort on age using insertion sort / bubble 

sort. 

b) Read the data from the file “employee.txt” and sort on names in alphabetical order (use 

strcmp) using bubble sort / insertion sort. 

Set C 

a) What modification is required to insertion sort to sort the integers in descending order? 

b) What modifications are required to bubble sort to sort the integers in descending order? 

c) What modifications are required to bubble sort to count the number of swaps? 

d) What modifications are required to insertion sort to count the number of key 

comparisons? 

e) What modifications are required to improve bubble sort to stop further passes if the file 

is already sorted that is when there are no more swaps? 

f) Compare the system time taken by insertion sort and bubble sort by using 'time' 

command on a random file of size 10000 or more. 

$ time ./a.out 

g) What modifications are required to output the array contents after every pass of the 

sorting algorithm? 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

  



Page 11 of 50 

 

Assignment 2: Sorting Techniques (Recursive) 

Recursive sorting techniques to be used in this assignment are Merge sort and Quick sort. 

Both use divide and conquer strategy.  

In Merge sort, data is divided into two parts, each part is sorted by using the same merge 

sort technique and the sorted files are then merged using a Merge procedure.   

In Quick sort, data is partitioned into two parts in such a way that all elements in first part 

are less than or equal to elements in second part. Both the parts are then sorted using the 

same Quick sort technique.  

Set A  

a) Sort a random array of n integers (accept the value of n from user) in ascending order 

by using a recursive Merge sort algorithm.  

b) Sort a random array of n integers (accept the value of n from user) in ascending order 

by using recursive Quicksort algorithm. 

Set B 

a) Read the data from the ‘employee.txt’ file and sort on age using Merge sort/ Quick sort 

and write the sorted data to another file 'sortedemponage.txt'. 

b)  Read the data from the file and sort on names in alphabetical order (use strcmp) using 

Mege sort/ Quick sort and write the sorted data to another file 'sortedemponname.txt'. 

Set C 

a) What modifications are required to choose the pivot element randomly instead of 

choosing the first element as pivot element while partitioning in Quick sort algorithm? 

b) Compare the system time taken by Merge sort and bubble sort by using time command 

on a random array of integers of size 10000 or more. 

c) What modification is required to Merge sort to sort the integers in descending order? 

d) In 'employee.txt' there are records with same name but different age and salary values. 

What are the relative positions when the data is sorted on name using Merge sort and 

what happens in case of quick sort? 

e) Sort a random array of integers of large size and store the sorted file. Compare the 

system time taken by Quicksort on a random file of large size and the sorted file of same 

size. Repeat the same for Merge sort. Does sorted file give best time? 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 



Page 12 of 50 

 

  

Assignment 3: Searching Techniques 

The commonly used searching methods used are linear search and Binary search 

Linear search is very simple technique to be used on any file while Binary search requires 

the file to be sorted. 

Set A 

a) Create a random array of n integers. Accept a value x from user and use linear search 

algorithm to check whether the number is present in the array or not and output the 

position if the number is present. 

b) Create a random array of n integers. Sort the array using bubble sort. Accept a value x 

from user and use binary search algorithm to check whether the number is present in array 

or not and output the position if the number is present. 

Set B 

a) Read the data from file 'cities.txt' containing names of 100 cities and their STD codes. 

Accept a name of the city from user and use linear search algorithm to check whether the 

name is present in the file and output the STD code, otherwise output “city not in the list”. 

b) Read the data from file ‘sortedcities.txt’ containing names of 100 cities and their STD 

codes. Accept a name of the city from user and use binary search algorithm to check 

whether the name is present in the file and output the STD code, otherwise output “city not 

in the list”. 

Set C 

a) If the file contains multiple occurrences of a given element, linear search will give the 

position of the first occurrence, what modifications are required to get the last occurrence? 

b) If the file contains multiple occurrences of a given element, will binary search output the 

position of first occurrence or last occurrence?  

c) Which is best case search when searching using linear search and when using binary 

search? 

d) What modifications are required to linear search and binary search algorithm to count 

the number of comparisons? 

e) What modifications are required to binary search so that it returns the position where x 

can be inserted in the sorted array to retain the sorted order? 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

  



Page 13 of 50 

 

Assignment 4:  Stack 

Stack is an ordered set of elements in which insertion and deletion are from one end of the 

stack called the top of the stack. It is a Last in First Out structure.  

1. Static Implementation 

A stack is implemented statically by using an array of size MAX to hold stack elements and 

an integer top storing the position of top of the stack. A stack is single entity that is a 

structure made up of both the array and the top. The stack elements can be integers, 

characters, strings or user defined types 

The operations to be performed on a stack are 

init(S) – Create an empty stack by initializing top to -1 indicating the stack is empty 

push(S, x) – adding an element x to the stack S 

pop (S) – deletes and returns the top element from the stack S 

Peek(S) - returns the top element from the stack S without deleting the element from the 

stack 

isEmpty(S) – Check if the stack is empty  

isFull(S) – check if the stack is full which happens when top equals MAX -1 

2. Dynamic Implementation 

A stack is implemented dynamically by using a Linked list where each node in the linked 

list has two parts, the data element and the pointer to the next element of the stack. Stack 

is a single entity i.e. a pointer pointing to the top node in the linked list. The stack elements 

can be integers, characters, strings or user defined types. There is no restriction on how 

big the stack can grow. 

The operations to be performed on a stack are 

init(S) – Create an empty stack S using linked list and by initializing S to NULL indicating 

the stack is empty 

push(S, x) – Adding an element x to the stack S requires creation of node containing x and 

putting it in front of the top node pointed by S. This changes the top node S and the 

function should return the changed value of S. The function call will be as follows 

S=push(S,x); 

pop (S) – deletes the top node from the stack S so that next element becomes the top. 

Since the top node S is changed function should return the changed value of S. The 

function call will be as follows 

S=pop(S); 

peek(S) - returns the data element in the top node of the stack S.  



Page 14 of 50 

 

isEmpty(S) – Check if the stack is empty which is equivalent to checking if S==NULL 

Set A  

a) Implement a stack library (ststack.h) of integers using a static implementation of the 

stack and implementing the above six operations. Write a driver program that includes 

stack library and calls different stack operations. 

b) Implement a stack library (dystack.h) of integers using a dynamic (linked list) 

implementation of the stack and implementing the above five operations. Write a driver 

program that includes stack library and calls different stack operations. 

Set B 

a) Write a function that reverses a string of characters. The function should use a stack 

library (cststack.h) of stack of characters using a static implementation of the stack. 

b) Write a function that checks whether a string of characters is palindrome or not. The 

function should use a stack library (cststack.h) of stack of characters using a static 

implementation of the stack. 

Set C 

a) Assuming one already has a stack library with above six operations available, how to 

implement the operation that deletes the bottom (not the top) element of the stack using 

available stack operations? 

b) In dynamic implementation of stack, How to modify pop operation so that it also returns 

the popped element as an argument of the pop function? 

 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

  



Page 15 of 50 

 

Assignment 5: Queue 

Queue is an ordered set of elements in which insertions are from the rear and deletions 

are from the front. It is a First in First Out structure.  

1. Static Implementation 

A Queue is implemented statically by using an array of size MAX to hold stack elements 

and two integers – front and rear. The ‘front’ stores the position of the current front element 

and ‘rear’ stores the position of the current rear element of the queue. A queue is a single 

entity that is a structure made up of the array, rear and front. The Queue elements can be 

integers, characters, strings or user defined types 

The operations to be performed on a Queue are 

init (Q) – Create an empty queue by initializing both front and rear to -1 indicating the 

queue is empty 

add (Q, x) – adding an element x to the rear end of the queue Q 

delete (Q) – deletes the element from the front of the queue Q 

peek (Q) - returns the front element from the queue without deleting the element from the 

Queue 

isEmpty (Q) – check if the queue is empty, that is, when rear equals front 

isFull (Q) – check if the Queue is full which happens when rear equals MAX -1 

2. Dynamic Implementation 

A Queue is implemented dynamically by using a Linked list where each node in the linked 

list has two parts, the data element and the pointer to the next element of the queue. Since 

Queue should be a single entity, we need to use only one external pointer while here we 

need two one for rear and one to the front. To avoid this we use a circular linked list and 

Queue pointer is pointing to the rear of the queue. Front can be easily accessed as it is 

next to rear. The Queue elements can be integers, characters, strings or user defined 

types. There is no restriction on how big the Queue can grow. 

The operations to be performed on a Queue 

init (Q) – Create an empty queue as a circular linked list by initializing S to NULL indicating 

that the queue is empty 

add (Q, x) – Adding an element x to the queue Q requires creation of node containing x 

and putting it next to the rear and rear points to the newly added element. This changes 

the rear pointer Q and the function should return the changed value of Q. The function call 

will be as follows 

Q=add(Q, x); 

delete (Q) – deletes the front node from the queue Q which is actually next element to the 



Page 16 of 50 

 

rear pointer Q. However if queue contains only one element, (Q�next == Q) then deleting 

this single element can be achieved by making empty Q (Q =NULL). Since the rear pointer 

Q is changed in this case, function should return the changed value of Q. The function call 

will be as follows 

Q=delete(Q); 

peek (Q) - returns the data element in the front (Q->next) node of the Queue Q.  

isEmpty (Q) – Check if the Queue is empty which is equivalent to checking if Q==NULL 

Set A  

a) Implement a queue library (stqueue.h) of integers using a static implementation of the 

queue and implementing the above six operations. Write a driver program that includes 

queue library and calls different queue operations. 

b) Implement a queue library (dyqueue.h) of integers using a dynamic (circular linked list) 

implementation of the queue and implementing the above five operations. Write a driver 

program that includes queue library and calls different queue operations. 

Set B 

a) A statically implemented queue may become full even if the initial positions in the array 

are unoccupied. To avoid this situation, a wrap around can be attempted and initial 

positions reused. The array can be treated as if it were circular. This can be implemented 

making use of mod function. Implement a queue library (cstqueue.h) of integers using a 

static implementation of the circular queue and implementing the above six operations. 

b) A doubly ended queue allows additions and deletions from both the ends that is front 

and rear. Initially additions from the front will not be possible. To avoid this situation, the 

array can be treated as if it were circular. Implement a queue library (dstqueue.h) of 

integers using a static implementation of the  circular queue and implementing the seven 

operations init(Q), isempty(Q), isFull(Q), addFront(Q,x), deleteFront(Q), addRear(Q,x) and 

deleteRear(Q) . 

Set C 

a) Write a create(Q, N) procedure which returns a dynamically implemented queue 

(circular linked list) containing N elements 1, 2,  ... N in ascending order. 

b) What should be the procedure to split a single queue into N queues so that queue 

principle of FIFO is not violated? 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

  



Page 17 of 50 

 

Assignment 6: Linked List 

An abstract data type List is an ordered set of elements where insertions and deletions are 

possible from any position. Implementing List statically using an array to store elements is 

costly as insertions and deletions require moving of array elements. List is efficiently 

implemented dynamically using Linked list. 

The linked list is a series of nodes where each node contains the data element and a link 

to the node containing the next element. The data element can be integer, character or 

user defined type. A list is a single entity which is a pointer to the first node of the linked list. 

A dummy node is used as header of the list so that it is not affected by insertions or 

deletions.  

 

 The operations to be performed on a linked list are 

insert (L, x, pos) – inserts the data element x by creating the node containing the data 

element x and inserting it in position pos. The links are appropriately changed. If pos 

equals 1, the node is inserted in first position immediately after the header. If pos is greater 

than the nodes present in the list, the node is added at the end of the list. 

search (L, x) – searches for the data element x and returns the pointer to the node 

containing x if x is present or returns NULL. 

delete (L, x) – deletes the node containing the data element x by appropriately modifying 

the links. 

display (L) – displays all the data elements in the list 

In a singly linked list there is only a link to the next element. For insertion as well as 

deletion one need to traverse with two pointers back and current.  

 

In a Doubly linked list there is link to the next element as well as a link to the previous 

element. For insertion one needs only the pointer to current element and same is true for 

deletion. 

List 

Head Next Data Next Data Next NULLData 

back 
pos 

current 

Data Next 

List 

Head Next Data Next Data Next NULLData 



Page 18 of 50 

 

Set A 

a) Implement a list library (singlylist.h) for a singly linked list with the above four operations. 

Write a menu driven driver program to call the operations. 

b) Implement a list library (doublylist.h) for a doubly linked list with the above four 

operations. Write a menu driven driver program to call the operations. 

Set B 

a) There are lists where insertion should ensure the ordering of data elements. Since the 

elements are in ascending order the search can terminate once equal or greater element 

is found. Implement a singly linked list of ordered integers(ascending/descending) with 

insert, search and display operations. 

b) There are lists where new elements are always appended at the end of the list. The list 

can be implemented as a circular list with the external pointer pointing to the last element 

of the list. Implement singly linked circular list of integers with append and display 

operations. The operation append(L, n), appends to the end of the list, n integers either 

accepted from user or randomly generated. 

Set C 

a) How to divide a singly linked list into two almost equal size lists?  

b) The union operation of two disjoint sets takes two disjoint sets S1 and S2 and returns a 

disjoint set S consisting of all the elements of S1 and S2 and the original sets S1 and s2 

are destroyed by the union operation. How to implement union in O(1) time using a 

suitable list data structure for representing a set? 

c) What is the method to reverse a singly linked list in just one traversal?  

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

  



Page 19 of 50 

 

Assignment 7: Tree 

Tree is a recursive data structure. A Binary tree consists of a root and two disjoint binary 

trees called left and right trees. In Binary search tree every element is distinct and 

elements in the left subtree are smaller than the root and root is smaller than elements in 

right subtree. 

The operations on binary search tree are 

init (T) – creates an empty Binary search tree by initializing T to NULL 

insert (T, x) – inserts the value x in the proper position in the Binary search tree 

search (T, x) – searches if the value x is present in the search tree 

inOrder (T) – displays the node using inorder traversal of binary search tree 

postOrder (T) – displays the node using postorder traversal of binary search tree 

preOrder (T) – displays the node using preorder traversal of binary search tree 

Set A 

a) Implement a Binary search tree library ( btree.h) with above six operations. Write a 

menu driven driver program to call the above functions 

Set B 

a) Write a C program which uses Binary search tree library and implements two more 

functions.  

Create(T, n) – inserts n nodes in the Binary search tree where the values are either 

accepted from user or randomly generated (use insert) 

Count(T) – returns the number of nodes in the tree  

Set C 

a) How Count(T) function can be modified instead to count leaf nodes in the tree? 

b) Write a delete(T, x) which deletes the node containing data element x if and only if it is a 

leaf node. 

c) What is the strategy to implement delete operation in case of a non leaf node? 

d) How to obtain a mirror image of a binary search tree? 

e) How to find the minimum element in a Binary search tree? How to find the maximum 

element in a Binary search tree? 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 



Page 20 of 50 

 

Assignment 8: Graph 

A graph consists of a set of vertices and a set of edges. The two main ways of 

representing graphs are adjacency matrix representation and adjacency list representation. 

In adjacency matrix representation of a Graph with n vertices and e edges, a two 

dimensional nxn array , say a , is used , with the property that a[i,j] equals 1 if there is an 

edge from i to j and a[i,j] equals 0 if there is no edge from i to j. 

In adjacency list representation of a graph with n vertices and e edges, there are n linked 

lists, one list for each vertex in the graph. 

The usual operations on graph are: 

Indegree(i) – returns the indegree (the number of edges ending on) of the ith vertex 

Outdegree(i) – returns the outdegree(the number of edges moving out) of the ith vertex) 

displayAdjMatrix – displays the adjacency matrix for the graph 

Set A  

a) Write a C program that accepts the vertices and edges for a graph and stores it as an 

adjacency matrix. Implement functions to print indegree, outdegree and to display the 

adjacency matrix. 

b) Write a C program that accepts the vertices and edges for a graph and stores it as an 

adjacency list. Implement functions to print outdegree of any vertex i. 

Set B 

a) Write a C program that accepts the graph as an adjacency matrix and converts it to 

adjacency list representation. Write a function to display the graph in adjacency list form. 

b) Write a C program that accepts the graph as an adjacency matrix and checks if the 

graph is undirected. The matrix for undirected graph is symmetric 

Set C 

a) What can be concluded about the directed graph if there is no vertex with indegree zero? 

b) In the adjacency list representation the dummy head node of each linked list can be 

used to store the indegree of the vertex when the adjacency list is created. Modify the 

program so that every time an edge node is added to the list the head node entry is 

incremented. Write a function to print indegree of vertex i.  

c) A graph may not have an edge from a vertex back to itself(self edges or self loops). 

Given an adjacency matrix representation of a graph, how to know if there are self edges? 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 



Page 21 of 50 

 

Data Structure Case studies 

Case studies are to be solved using following steps 

Step 1 – Formulation of the problem 

Step 2 – Choice of variables and appropriate data structures 

Step 3 – Choice of Algorithms 

Step 4 – Implementation of solution 

Step 5 – Validation   

1. Banks often record transactions on an account, in order of the times of the transactions, 

but many people like to receive their bank statements with cheques listed in order by 

cheque number. People usually write(use) cheques in order by cheque number, and 

merchants usually cash them with reasonable dispatch. Thus few cheque numbers are 

usually out of order. Use an appropriate sorting algorithm for converting time of transaction 

ordering to cheque number ordering. Formulate the problem and write a C program to 

solve the problem by using appropriate data structures and algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

2. Given a data set consisting of n integers, a five point summary is to be produced 

consisting of Minimum, Maximum, Median, 1st and 3rd Quantile. Formulate the problem 

and write a C program to solve the problem by using appropriate data structures and 

algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

3. A spell checker is a program that looks at a document and compares each word in the 

document to words stored in a dictionary. If it finds words in the dictionary, it moves on to 

the next word, If it does not find the word, it reports the user about the misspelled(possibly) 

word. Formulate the problem and write a C program to solve the problem by using 

appropriate data structures and algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 



Page 22 of 50 

 

*4. A postfix expression of the form ab+cd-*ab/ is to be evaluated after accepting the 
values of a, b, c and d. The value should be accepted only once and the same value is to 
be used for repeated occurrence of same symbol in the expression. Formulate the 
problem and write a C program to solve the problem by using appropriate data structures 
and algorithms. 
 
Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

*5. An Infix expression of the form a*(b+c)*((d-a)/b) need to be converted to postfix form 

using usual precedences of operators. Formulate the problem and write a C program to 

solve the problem by using appropriate data structures and algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

6. Suppose that we are selling the services of a machine. Each user pays a fixed amount 

per use. However the time needed by each user is different. We wish to maximize the 

returns from this machine under the assumption that the machine is not to be kept idle 

unless no user is available. Whenever the machine becomes available, the user with the 

smallest time requirement is selected. When a new user requests the machine, he has to 

wait if there are pending requests. Formulate the problem and write a C program to solve 

the problem by using appropriate data structures and algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

7. Suppose that we are selling the services of a machine. Each user uses the machine for 

a fixed amount of time. However the people are ready to pay different amounts for the 

service. We wish to maximize the returns from this machine under the assumption that the 

machine is not to be kept idle unless no user is available. Whenever the machine becomes 

available, the user with the highest paying amount is selected. When a new user requests 

the machine, he has to wait if there are pending requests. Formulate the problem and write 

a C program to solve the problem by using appropriate data structures and algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 



Page 23 of 50 

 

8. A factory has many machines and many jobs that require processing on some of the 

machines. Each job has a job card which contains all the attributes of a job including the 

machines on which it need to be processed and the processing time. For simplicity let us 

assume that there are ten machines numbered 0,1, 2...9 , each job is processed for fixed 

amount of time and the job card number is coded in such a way that the machine 

requirements can be accessed. For example if job card number is 5438, it means job 

requires processing on machines 5, 4, 3 and 8. The job can be processed simultaneously 

on these machines. However each machine can process jobs one at a time and takes up 

the new job when it becomes idle. Formulate the problem and write a C program to solve 

the problem by using appropriate data structures and algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

9. A file manager identifies each file using an inode-no. A directory is also a file identified 

by an inode-no. Directory is a list of files each represented by an inode-no. The list has the 

header containing the inode-no of the parent that is the directory itself. A separate table 

indexed by inode-no maintains attributes of files including the name of the file.  Formulate 

the problem and write a C program to solve the problem by using appropriate data 

structures and algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

*10. Polynomials with varying degree can be represented using linked list. A term in a 

polynomial is represented by a node with structure.    

Coefficient exponent Link 
For example a polynomial x1000 + 3 x50 + 5 x4 can be represented as 

Header    1 1000   3 50   5 4  
The number of nodes required to represent the polynomial is same as the number of terms 

in the polynomial with an additional node for the header. The nodes are maintained in the 

descending order of exponents. One need to accept, display polynomial and also perform 

other operation on polynomials such as addition. Formulate the problem and write a C 

program to solve the problem by using appropriate data structures and algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 



Page 24 of 50 

 

11. The Josephus problem is the following game. N people, numbered 1 to N are sitting in 

a circle. Starting at person 1, a hot potato is passed, After M passes, the person holding 

the hot potato is eliminated, the circle closes ranks, and the game continues with the 

person who was sitting after the eliminated person picking up the hot potato. The last 

remaining person wins. Thus, If M=0 and N=5, players are eliminated in order, and player 

5 wins. If M=1 and N=5, the order of elimination is 2, 4, 1, 5 and the player 3 wins. The 

Josephus problem needs to be solved for general values of M and N (N > 10000). 

Formulate the problem and write a C program to solve the problem by using appropriate 

data structures and algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

12. Consider the database of books maintained in a library system When a user wants to 

check whether a particular book is available, a search operations is called for. If the book 

is available and is issued to the user, a delete operation can be performed to remove this 

book from the set of available books. When the user returns the book, it can be inserted 

back into the set of available books. It is essential that we are able to support the above 

mentioned operations as efficiently as possible as since these operations are performed 

quite frequently. Formulate the problem and write a C program to solve the problem by 

using appropriate data structures and algorithms. 

 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

13. An Address book contains the name and other details of friends. User wants to check 

for a particular name and get the details such as phone number or email address of his 

friend. New Addresses are added to the address book. The contact information may also 

require frequent updation. Certain important contact numbers (a small number) which are 

frequently required should be accessible very fast. These contacts may be important 

(favourites) at some point in time but may not continue to remain so and have to be 

removed. Formulate the problem and write a C program to solve the problem by using 

appropriate data structures and algorithms. 

 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 



Page 25 of 50 

 

*14. In breadth first search (BFS) of a Graph we start at vertex v and mark it as having 

been visited. All unvisited vertices adjacent from v are visited next. The v is thus 

completely explored. The visited but at unexplored vertices are taken up next for 

exploration. Exploration continues until no unexplored vertex is left. If BFS is used on a 

connected undirected graph G, then all vertices in G get visited and the graph is 

completely traversed. Thus BFS can be used to check whether graph is connected. 

Formulate the problem and write a C program to solve the problem by using appropriate 

data structures and algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

*15. In depth first search of a Graph we start at vertex v and mark it as having been visited. 

The exploration of the vertex involves visiting all the adjacent vertices however the 

exploration of a vertex is suspended as soon as a new vertex is reached and the 

exploration of a new vertex begins. When the exploration of new vertex is over, the 

exploration v is resumed. DFS can be best implemented as a recursive function. A 

topological sort of a directed acyclic graph is a   linear ordering of all its vertices such that 

if G contains an edge (u, v), then u appears before v in the ordering. For topological 

ordering DFS is called on the graph and every vertex explored is added onto the front of a 

linked list that forms the topological order. Formulate the problem and write a C program to 

solve the problem by using appropriate data structures and algorithms. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

 

  



Page 26 of 50 

 

Section II – Object Oriented Programming Concepts using C++ 

Assignment 9: Class, Object and methods implementation 

We will illustrate C++ program structure, using a sample program. It will be also used to 

bring out differences in C++ and C. 

C++ is an object Oriented programming language and thus classes, objects and methods 

form the essence of the program structure.  

C++ is a modular programming language thus program is divided into several files which 

can be separately compiled to form the object file. A program is divided into header files, 

with .h as extension containing class and method declarations and code files with .cpp 

extension containing method implementations and driver function 

The following programs is greeting employees and employee being a separate entity, we 

define a class for the same 

Header File employee.h Code file employee.cpp Code file greet.cpp 
using namespace std; 
class employee{ 
 int id; 
 int salary; 
static int number; 
public: 
employee(); 
void setSalary(int); 
void display();  
}; 
 

#include "employee.h" 
#include <iostream> 
using namespace std; 
employee::employee() 
{ id = number++; 
} 
void employee::setSalary(int val) 
 { salary=val; 
} 
void employee::display()  
{ 
cout << "\nIdentification no : " <<  id ; 
cout << "\nSalary : " << salary << 
"\n"; 
} 
int employee::number=1; 
 

#include <iostream> 
#include "employee.h" 
using namespace std; 
int main() 
{ 
char command; 
employee e, e1; 
cout << "Welcome to the 
Program\n"; 
do{ 
cout << "Enter 'g' to greet\n"; 
cout << "Enter 'q' to quit \n"; 
cout << "Enter command : "; 
cin >> command; 
e1.setSalary(50); 
switch(command){ 
case 'g': cout << "Hello\n"; 
e1.display(); break; 
default: e.display(); break; 
} 
} while (command !='q'); 
return 0; 
} 
 

1. Each of the above code snippets start with include pre-processor directive. By including 

iostream, the input output library, we are able to use predefined stream object ‘cout’ which 

is useful for generating output. The user defined class Employee is available in main.cpp 

and employee.cpp by using include pre-processor directive 

2. The next line is  

using namespace std; 

The names of user defined types and variable names used in various library files, form the 

namespace of a program. C++ allows grouping of such variable names into namespaces 



Page 27 of 50 

 

identified by the group name. Thus if there is duplication of name leading (user defined 

and library) to conflict, it can be resolved using the groupname along with the variable 

name.  

3. In C++ class is used to define user defined data types. Several object instances of class 

can be used by defining them as we define other data types. Here employee class has 

both data members and function members.  

4. Access qualifiers allow data members and functions to be hidden, if necessary from 

external use. Data members of employee class as defined above are private (by default) 

while function members are public. 

5. The variables e and e1 defined in main function are instances of class employee. Each 

object instance will have its own set of variables however we sometimes need to have 

variables which are common to all object instances. In C++ such variables need to be 

declared as static. In employee class number is one such variable. Static variables have to 

be initialized outside of the class definition. It can be inside a class declaration or outside. 

The value of the static variable is available throughout. The static variable number of 

employee class is initialized in employee.cpp by using the statement 

int employee::number=1; 

6. The constructor is having the same name as that of the class. Here the constructor 

increments the static variable. 

7. Only the member functions can have access to the private data members and private 

functions. However, the public members can be accessed from outside the class. If the 

data members of a class are private, one need to have public function members to get or 

set the values of these data members. Here setSalary function sets the value of the salary 

variable. The display function uses input output library object cout to output the data 

members. 

8. The main function uses both cin and cout stream library objects to perform input and 

output.

 

 

User Defined .h files 

(declarations) 

Library .h files 

(declarations) 

Library .h files 

(declarations) 

.cpp or .cc file 

(definitions) 

.cpp or .cc file 

(definitions) 

.cpp or .cc file (main 

function) 

include 

compile 

.o or .obj   file   .o or .obj   file  .o or .obj   file   

link 

a.out Executable file   



Page 28 of 50 

 

The general program structure is as above. The compilation and linking can be carried out 

using g++ compiler 

$ g++ employee.cpp employee.o 
$ g++ main.o employee.o trial 
$ ./trial 

$ g++ employee.cpp employee.o 
$ g++ main.o employee.o 
$ ./a.out 

 

Set A  

a) Write the definition for a class called ‘time’ that has hours, minutes & seconds as integer 

data members. The class has the following member functions: 

void settime(int, int, int) to set the specified values of hours, minutes and seconds in object 

void showtime() to display contents of time object 

time add(time) add the corresponding values of hours, minutes and seconds (<60) in time 

object argument to current time object and make appropriate conversions and return time 

time diff(time) subtract values of hours, minutes and seconds in time object argument from 

current time object after making appropriate conversions and return time difference 

Write a main program to illustrate the use of above class. 

b) Write the definition for a class called “cuboidSolid” that has length, breadth, height and 

mass has float data members. The class has the following member functions. 

Setters and getters for each of the data members 

float getVolume() that returns the volume of the metal 

float getSurfaceArea() that returns the surface area 

float getDensity() that returns the density 

Write a main program to illustrate the use of above class. 

Set B 

a) Define a class account with following specifications 

private data members  

account number – automatically generated six digit account number, first two digit 

are used for bank code (assume the value 82) and next four digits for account 

number 

account type – it can be one of the following type { saving, current, fixed, recurring} 

amount – long integer for the balance amount 

Owner Name – name of the owner 



Page 29 of 50 

 

Public data members for  

Setting and getting account type, initial amount and Owner Name 

Display account information 

Write a main program to accept information from user and open at least five accounts and 

display their information. 

b) Implement a class ‘RomanNumeral’ which stores the RomanNumeral as a string. Write 

a member function getDecimal which returns the decimal value of the Roman numeral. 

The decimal values of roman numerals are as follows M 1000, D 500, C 100, L 50, X 10, V 

5 and I 1. Write the program and create the roman numerals such as VIII, MCXIV , 

MCDLXVI and print their decimal values. 

c) Write the definition for a class called Rectangle that has floating point data members 

length and width. The class has the following member functions: 

void setlength(float) to set the length of data member 

void setwidth(float) to set the width of data member 

float perimeter() to calculate and return the perimeter of the rectangle 

float area() to calculate and return the area of the rectangle 

void show() to display the length and width of the rectangle 

Write main function to create two rectangle objects and display each rectangle and its area 

and perimeter. 

Set C 

a) What purpose is served by using const keyword with a member function? Can it be 

used with a static member function? 

b) How to write a function for employee class which can tell us whether any instance of 

employee has been created or not? 

c) Having declared two variables t1 and t2 of type time, what happens if we write the 

following statement? Justify. 

t1=t2; 

d) An Accessor function of a class is a member function that only accesses but does not 

modify the data members of the class. How to declare function showtime() or getVolume() 

to safeguard them from modifying? 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 



Page 30 of 50 

 

Assignment 10: Constructor: Copy, Default & Parameterized Constructor 

A constructor is special member function that creates an object. It is special because its 

name is the same as the class name. Constructors are declared as public member 

functions and do not have return types. 

Constructors are invoked explicitly using new operator as in 

cuboidSolid cubemetal = new cuboidSolid(5, 5, 5, 520); 

Constructors are invoked implicitly when objects are declared as in 

CuboidSolid cubemetal(12, 3, 4, 233); 

There can be multiple ways of creating an object so there are different constructor types. 

Default Constructor -It does not accept any parameters. Purpose of this, is only to create 

object. It initializes data members to predefined default values. 

Parameterized Constructor - It accepts any number of formal parameters and uses these 

parameters to initialize the objects. 

Copy Constructor - It creates exact copy of an object. It takes a reference to an object of 

the same class as itself as argument. It copies data from one object to other by copying 

every member of an object with the member of object passed as argument. An object 

passed to copy constructor is of const type as constructor is not supposed to change the 

contents of the object to be copied. 

cuboidSolid (const cuboidSolid &  cubemetal) 

{  length =cubemetal.length; 

 ………………………… 

} 

Set A 

a) Define a class ‘Fraction’ having integer data members numerator and denominator. 

Define parameterized and default constructors (default values 0 and 1). Parameterized 

constructor should store the fraction in reduced form after dividing both numerator and 

denominator by gcd(greatest common divisor). Write a private function member to 

compute gcd of two integers.   

Write four member functions for addition, subtraction. multiplication and division of fraction 

objects. Each function will have two fraction objects as arguments. Write the main function 

to illustrate the use of the class. 

Set B 

a) Design a class Book with the data members to hold title, number of authors, ISBN 

number, price and number of copies. The title and ISBN number are pointer to characters 

Define parameterized and default constructors(number of authors and number of copies 



Page 31 of 50 

 

equal to 1). Write getters and setters for each of the member functions. Write the copy 

constructor.  

Write a member function to check the validity of the ISBN number; it is a unique number 

assigned to a book which can be a 10 digit or 13 digit number. For 10 digit ISBN number, 

the sum of all the 10 digits, multiplied by its integer weight, descending from 10 to 1, or 

ascending from 1 to 10, is a multiple of 11. 

10x1+9x2+8x3+7x4+6x5+5x6+4x7+3x8+2x9+1x10≡ 0 mod 11 

For 13 digit ISBN number, the last digit is a check digit which must range from 0 to 9 and 

sum of all the thirteen digits multiplied by weights alternating between 1 and 3 is a multiple 

of 10 

x1+3x2+x3+3x4+x5+3x6+x7+3x8+x9+3x10+x11+3x12+x13≡ 0 mod 10 

Call the function in the constructor before initializing the ISBN number. 

Set C 

a) Write the copy constructor which apart from memberwise copying outputs the message 

that the constructor is called. What are the situations when the copy constructor is 

automatically invoked? 

b) Why copy constructor accepts reference to an object and not the object itself? What 

happens if we do otherwise? 

c) A copy constructor is always implicitly defined for a class by the compiler. When it 

needs to be explicitly defined for the class? 

d) A Mutator is a member function that modifies the data members of the class. A class 

can have more than one mutators. Justify. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

  



Page 32 of 50 

 

Assignment 11: Memory Allocation: new and delete operators, dynamic constructor 

C++ provides two operators new and delete for dynamic memory usage. The new operator 
allocates memory from free store while the delete operator returns the allotted memory to 
free store.  

For built in types we use them as follows 

int * p, *arr ; 

p =new int; 

arr = new int[30]; 

delete p; 

delete [] arr; // we need not specify the size 

For user defined types it is similar 

fraction *single, *vector; 

single = new fraction; 

vector = new fraction[30]; 

Set A 

a) Implement a class vector which contains integers in sorted order. The size of the vector 

varies so the memory should be dynamically allocated. It should have three data members 

vectorarray – a pointer to integer, maxsize – the maximum allocated size to take care of 

insertions and size – actual size. Write member function to get and set value at a particular 

position in vector, to insert values in vector to keep it in sorted order, print the vector. 

Implement the copy constructor. Write member functions to form union and intersection of 

vectors.  

Set B 

a) Implement a class ‘sequence’ which contains a sequence of strings. The size of each 

string varies so also the number of strings in a sequence hence memory should be 

dynamically allocated. The constructor should accept the number of strings and each of 

the strings to be added to the sequence. Write member function to append a new string in 

the sequence, print the sequence, and search a string in the sequence. Implement the 

copy constructor. Write a function reverse that reverses every string in the sequence. 

Write a friend function intersection that takes two sequences and returns a sequence 

containing common strings. 

Set C 

a) When does a destructor need to be explicitly defined for a class? Write destructor for 
vector class. 

b) Define parameterized constructor for vector class to initialize maxsize and size. Use this 
to create a vector object dynamically. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 



Page 33 of 50 

 

Assignment 12: Inline function, friend function, default argument, 

Inline function  

To save the execution time that gets lost in the overheads of calling a function, the 

compiler can be instructed to insert the code wherever function is called. 

An inline function is a function whose code is expanded in line at the point at which it is 

invoked, rather than being called. 

There are two ways to create an inline function. The first is to use the inline qualifier. 

inline int f() 

{ 

.......... 

} 

There is another way to create an inline function. This is accomplished by defining the 

code of a member function inside a class declaration ( .h file). 

Friend function 

If a member of a particular class is private or protected, functions outside the class cannot 

access the non-public members of the class. This is the primary objective of 

encapsulation. However, at times, it becomes a problem for the programmer. In order to 

access the nonpublic members of a class, C++ provides the friend keyword. 

Any non-member function may be declared a friend by a class, in which case the function 

may directly access the private member attributes and methods of the class objects. 

Default arguments 

In C++, you can give a parameter a default value that is automatically used when no 

argument corresponding to that parameter is specified in a call to a function. 

For example the constructor for the class fraction can be declared with default arguments 

fraction (int num=0, int denom=1); 

and the definition will be 

fraction( int num , int denom) 

{  

numerator=num/gcd(num, denom); 

denominator = denom/gcd(num, denom); 

} 



Page 34 of 50 

 

Function can be called with zero, one or two arguments. Missing arguments must be the 

trailing arguments and get the default values. Note that if one argument is missing when 

the function is called it is assumed to be last argument 

Set A 

a) Implement a class date with three integer data members day, month and year. Write 

inline function to compress date into a single integer, to count the difference in number of 

days between the date and the one passed as argument. The date can be an unsigned 

integer (16 bits) in the following manner year: bits 15-9, month: bits 8-5 and day bits 4-0. 

b) Implement a class Message having two data members a pointer to character and an 

integer storing length of the string. Implement a class Key having two data members a 

character array of size 30 and an integer storing actual length of the string. The restrictions 

on Key are that the length should be less than 30 but minimum size 8 and having atleast 

one digit and one upper case character in it. Write a friend function to encrypt a Message 

using key (use some encryption algorithm)  

c) Implement a class TalkingInterface with following private member functions. Define a 

member function greet which displays a greeting ‘n’ number of times.  

greet(); //displays  “Hi”  once 

greet(“Namaste”); //displays “Namaste” once 

greet(“hello”, 10); //displays hello 10 times 

Define a member function tables 

Tables() ;// displays table from 1 to 10 

Tables( 2); // displays table of 2 from 1 to 10 

Tables(2, 3) // displays table of 2 from 3 to 10 

Tables(2, 3, 6) // displays table of 2 from 3 to 6 

Declare TalkingInterface as a friend class of Person or Employee class and use these 

functions. 

Set B 

a) Implement a class Time12 which stores time in 12 hr format (hh, mm, ss, am/pm). It has 

four data members, three integers for hour, minutes and seconds and a character array of 

size 2 storing am/pm. Define constructor with default arguments (midnight). Define 

accessors and mutators as inline functions. Implement a second class Time24 which 

stores time in 24 hr format (hh, mm, ss). It has three data members, three integers for 

hours, minutes and seconds. Define accessors and mutators as inline functions. Write 

friend functions to compare time in 12 hr format to time in 24 hr format, to convert time in 

12 hr format to 24 hr format and vice versa. 



Page 35 of 50 

 

 

Set C 

a) What purpose is served by defining a class as friend? Is friendship between classes 

mutual? 

b) If one argument is missing when the function with default arguments is called, which 

argument will get the default value? 

 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

  



Page 36 of 50 

 

Assignment 13: Function Overloading. 

Function overloading is a kind of polymorphism in which there can be several functions 

with same name but different set of parameters, all functions conceptually carrying out the 

same task but there is variation depending on the arguments. The definition of functions 

should differ from each other by type and /or number of arguments in the argument list. 

One commonly found overloaded function in a Class is the constructor itself as there can 

be more than one possible ways of constructing an object. 

Set A 

a) Implement  a class ‘printdata’ with three member functions all with the same name 

‘print’   

void print(int) - outputs value - <int>, that is, value followed by the value of the integer 

void print (int, int) – outputs value – [<int>, <int>], that is, value followed by the two 

integers separated by comma in square brackets. 

void print(char *) – outputs value –“char*”, that is, value followed by the string in double 

quotes. 

Write a main function that uses the above class and its member functions. 

b) Implement a class ‘maxdata’ with two member functions both with the same name 

‘maximum’ 

int maximum ( int, int) – returns the maximum between the two integer arguments 

int maximum ( int *) – returns the maximum integer in the array of integers 

Write a main function that uses the above class and its member functions. 

 

Set B 

a)  Implement a class ‘invertdata’ with three member functions all with the same name 

‘invert' 

int invert ( int) - returns the inverted integer – invert(5438) will return 8345 

char * invert ( char *) – returns the reversed string – reverse(“comp”) will return ”pmoc” 

void invert( int * ) – will reverse the array order – An array [5, 7, 12, 4] will be inverted to 

 [4, 12, 7, 5] 

Set C 

a) Can we have two functions with same name and set of arguments but different return 

data types? 

b) Can we have two functions with same name with two different data types, for one 

function the argument  is int for other it is user defined type ‘Number’ which is  basically int 

but renamed ‘Number’ using typedef? 

c) Can we have two functions void f( int x) and void f(int & x), that is, one with integer 

argument and other with reference to integer argument? 



Page 37 of 50 

 

d) Can we have two functions given as follows? 

void value(float x) { cout << “float ” << x << endl; } 

void value(double x) { cout << “ double” << x << endl; 

What will be printed for the call 

 value( 10) ;  

value (10.1); 

e) Can we have two functions with same name, one having integer as argument while 

other enumerated data type as argument? 

 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

  



Page 38 of 50 

 

Assignment 14: Operator overloading. 

Operator overloading gives special meaning to usual operators like +, *, < etc. for user 

defined types similar to the one they have with built in data types. There are few operators 

in C++ that cannot be overloaded such as ternary operator ?:, sizeof, scope resolution 

operator :: and membership operators . and .* .  

Operator overloading is carried out by writing member functions using the operator 

keyword called operator functions. 

The general syntax of an operator function is 

return-type operator operatorsymbol ( parameter list) 

{ 

} 

Here return-type is commonly the name of the class itself as the operations would 

commonly return object of that class type. 

The argument list will depend on whether the operator is unary or binary and whether the 

function is a member function or friend function. For example for a unary operator, 

member function will have no arguments as the class object itself is the object on which 

operator operates. For a binary operator, a non member function will have two arguments 

while a member function has one argument, the other implicitly being the class object 

itself. 

fraction operator + ( fraction f) 

{ fraction temp; 

 temp.numerator = numerator*f.denominator +denominator*f.numerator 

 temp. denominator = denominator*f.denominator; 

 temp.numerator = temp.numerator/gcd(temp.numerator, temp.denominator); 

 temp.denominator = temp.denominator/ gcd(temp.numerator,temp.denominator); 

 return temp; 

} 

Overloading increment and decrement operators 

The increment operator ++ has two forms: pre-increment (++u) and post-increment(u++). 

To distinguish between pre and post increment operator overloading, we use a dummy 

parameter of type int in the function heading of the post-increment operator function. 

Decrement operator can be overloaded similarly. 

fraction operator++() 



Page 39 of 50 

 

{  

numerator+=denominator;// add one to the fraction, that changes the numerator 

return *this; // return the incremented value 

} 

fraction operator ++(int) 

{  

fraction temp=*this; // copy the value before increment 

numerator+=denominator; // add one to the fraction, that changes the numerator 

return temp;// return the old value of the object 

} 

Overloading insertion and extraction operators 

Overloading insertion(<<) operator and extraction (>> ) operator is a must when you want 

to input and output objects using stream class library in the similar fashion as built in data 

types. For a class fraction we should be able to do the following 

fraction f1, f2(2,3); 

cin >> f1; 

cout << f2;  

Since the first operand is iostream object, the operator function will be friend function and 

the declarations will be  

friend ostream& operator<< (ostream &out, fraction &fract) 

{  

out << fract.numerator <<”/” << fract.denominator ; 

return out; 

} 

friend istream& operator >> (istream &in, fraction &fract) 

{ 

 in >> fract.numerator ; 

 in >> fract.denominator; 

return in; 



Page 40 of 50 

 

} 

Overloading the Assignment operator =  

Assignment operator does member wise copying and built in assignment operator function 

works well except with the classes having pointer data members. In such cases one must 

explicitly overload assignment operator.  

The vector class has dynamic data member hence the assignment operator need to be 

explicitly overloaded  

const vector & operator = (const vector & rightvector) 

{ if (this != rightvector) 

{  delete [] vectorarray; 

   maxsize= rightvector.maxsize; 

  size = rightvector.size; 

  vectorarray= new int [maxsize]; 

  for(int i=0; i< size; i++)  

  vectorarray[i]=rightvector.vectorarray[i]; 

} 

return *this; 

} 

Overloading the Subscript operator [] 
 
The function to overload the operator [] for a class must be the member of the class. 

Furthermore, because an array can be declared as constant or nonconstant we need to 

overload the operator [] to handle both cases.  

int & operator[](int index) 

{  

 assert( 0<= index && index <size); 

 return vectorarray[index];  

} 

const int & operator[](int index) const 

{ 

 assert( 0<= index && index <size); 



Page 41 of 50 

 

 return vectorarray[index]; 

} 

Set A 

a) Define a class named Complex for representing complex numbers. A complex number 

has the general form a + ib, where a- the real part, b - the imaginary part are both real 

numbers and i2=-1. Define parameterized and default constructor.  Overload +, - and * 

operators with usual meaning. 

b) Define a class named Clock with three integer data members for hours, minutes and 

seconds. Define parameterized and default constructors. Overload increment and 

decrement operators appropriately. Overload extraction and insertion operators. 

Set B 

a) Define a class Message with two data members one character pointer and an integer 

storing length. Overload operator binary + to represent concatenation of messages, [] to 

return a character at a specific position and = to copy one Message object to another.  

b) A Matrix has rows and columns which decide the number of elements in the matrix. We 

will implement a matrix class that can handle integer matrices of different dimensions. We 

can overload addition, subtraction and multiplication operator to carry out usual matrix 

addition, subtraction and multiplication. 

Set C 

a) Why return type in case of assignment operator function is a constant reference?  

b) Is it possible to overload new and delete operators?  

c) Why are << and >> operators overloaded as friend functions? 

d) Which operator should be overloaded to convert the Message to uppercase? 

 
Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

  



Page 42 of 50 

 

Assignment 15: Inheritance 

Inheritance is the process of creating new classes from an existing class. The existing 

class is known as base class and the newly created class is called a derived class. The 

derived classes inherit the properties of base classes. 

If the derived class inherits from a single parent, the inheritance is said to be single 

inheritance. Multiple inheritance is the process of creating a new class from more than one 

base classes. Inheritance can be viewed as a hierarchical structure where base class is at 

root shown with its derived classes at different levels 

 

class shape 
{…………… 
}; 
class circle: public shape 
{…………. 
}; 
class rectangle : public shape 
{……………. 
}; 
Class square : public rectangle 
{……………… 
}; 

 

Set A 

a) Given the following inheritance hierarchy, implement each of the classes. 

 

The person class has parametrized constructors and getters and setters. The employee id 

is auto generated from the last allotted value stored in employee class. Write constructors 

for derived and getters and setters. Define member function computepay for employee and 

override appropriately in derived class. Overload extraction and insertion operators in base 

class and override them in the derived classes. Write main program to illustrate use of the 

classes 

b) Implement the following class hierarchy.  

Student: id, name,  

StudentExam (derived from Student): Marks of n subjects (n can be variable)  

StudentResult (derived from StudentExam): percentage, grade  

 Define a parameterized constructor for each class and appropriate functions to accept 

person ( firstname, lastname) 

 

employee (id, joiningdate) 

 

fulltime-employee (salary, bonus) parttime-employee ( hoursworked, payrate) 

Shape 

circle Rectangle 

Square 



Page 43 of 50 

 

and display details. Create n objects of the StudentResult class and display the marklist 

using suitable manipulators.   

Set B 

a) Implement the following class hierarchy 

 

Define constructors and appropriate functions to accept and display details. Write a 

program to accept details of ‘n’ TA’s and display the details.  

b) A book(ISBN) and CD(data capacity) are both types of media(id, title) objects. A person 

buys 10 media items, each of which can be either book or CD. Display the list of all books 

and CD’s bought. Define the classes and appropriate member functions to accept and 

display data. Use pointers and concepts of polymorphism (virtual functions).   

Set C 

a) When is it mandatory for a derived class to define a constructor? 

b) What is the purpose of a pure virtual function? 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

  

person (firstname, lastname) 

 

student (course) 

 

Teaching-Assistant() 

Teacher (department) 



Page 44 of 50 

 

Assignment 16: File handling 

To perform input and output from files, C++ provides the fstream library. It defines several 
classes including ifstream and ofstream. 

We connect stream object to the physical file by creating a stream object by specifying the 
name of the file as argument. 

#include <fstream> 

ofstream outfile(“output”); 

ifstream infile(“input”); 

Alternatively the file can be connected by using the open member function with one or 
more arguments 

#include <fstream> 

ofstream outfile; 

ifstream infile; 

infile.open(“input”); 

outfile.open(“output”, ios::  app | ios :: nocreate); 

// do not create a new file, append at the end of file 

The file should be disconnected by using close member function. To access and 
manipulate contents of the file, get, put, read and write methods are provided. 

Set A 

a) Implement a class “file” with four data members, a string storing the name of the file and 
integers storing the number of characters, words and lines in the file. Write the following 
member functions 

The constructor takes only the file name as the argument and opens the file, counts the 
characters, words and lines and initializes the other data members. If the file does not exist 
creates a blank file with the name and other data members are initialized to zero. Write 
getters for all the data members. 

Write additional member functions that count number of blank lines, searches for 
occurrence of word in the file. 

Set B 

a) The file ‘cities.txt’ contains names of cities and their STD codes. Define a class ‘city’ 
with data members name and STD code. Write a program that declares a city array and 
reads the data from file cities.txt into the array.  Output the list of names and STD codes, 

Set C 

a) Which functions are used for random access to a file? 

b) How would you find out the size of a file in bytes using functions for random access to 

file? 

 

 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 



Page 45 of 50 

 

Case studies in C++ 

1. A bit vector is a vector with binary elements, that is, each element is either a 0 or a 1. Bit 
vectors are used in several applications such as resource allocation. Small bit vectors are 
conveniently represented by unsigned integers. For example, an unsigned char can 
represent a bit vector of 8 elements. Larger bit vectors can be defined as arrays of such 
smaller bit vectors. Complete the implementation of the Bitvec class, as defined below. It 
should allow bit vectors of any size to be created and manipulated using the associated 
operators. 
 

class BitVec { 
unsigned char *vec; // vector of 8*bytes bits 
short bytes; // bytes in the vector 

public: 
BitVec (const short dim); 
BitVec (const char* bits); 
BitVec (const BitVec&); 
~BitVec (void) { delete vec; } 
BitVec& operator = (const BitVec&); 
BitVec& operator &= (const BitVec&); 
BitVec& operator |= (const BitVec&); 
BitVec& operator ^= (const BitVec&); 
BitVec& operator <<= (const short); 
BitVec& operator >>= (const short); 
int operator [] (const short index); 
BitVec operator ~ (void); 
BitVec operator & (const BitVec&); 
BitVec operator | (const BitVec&); 
BitVec operator ^ (const BitVec&); 
BitVec operator << (const short n); 
BitVec operator >> (const short n); 
bool operator == (const BitVec&); 
bool operator != (const BitVec&); 
friendostream& operator << (ostream&, BitVec&); 

}; 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

2. Matrices have wide utility in variety of applications. A Matrix has rows and columns 

which decide the number of elements in the matrix. We will implement a matrix class that 

can handle integer matrices of different dimensions. We can overload addition, subtraction 

and multiplication operator to carry out usual matrix addition and multiplication.  

class Matrix { 
int  *vec; // storing matrix elements in column major form 
int rows; // number of rows 
int columns;// number of columns 

public: 



Page 46 of 50 

 

Matrix (const int row=1, const int column=1); 
Matrix (const Matrix&); // copy constructor 
~Matrix (void) { delete vec; } 
Matrix operator + (const Matrix&); 
Matrix& operator += (const Matrix&); 
Matrix operator - (const Matrix&); 
Matrix& operator -= (const Matrix&); 
Matrix operator * (const Matrix&); 
Matrix& operator *= (const Matrix&)’ 
friend ostream& operator << (ostream&, Matrix &); 
friend istream & operator >>(istream&, Matrix&); 

}; 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

3. A credit card has information like cardNumber, CVV number, type (VISA/MasterCard 

etc), ownerName, DOB, Address, balance. A card can be of various types: SILVER, GOLD 

and PLATINUM. The spending limit and privileges (late fees, payment deadlines) vary 

according to the card type. SILVER (limit- 35000, late fee – 250, deadline- 15 days),  

GOLD(limit- 85000, late fee – 150, deadline- 20 days), PLATINUM (limit- 1,50,000, late fee 

– 100, deadline- 30 days). The credit statement is generated on the 15th of each month.  

Design classes to represent the above and write a program to perform transactions 

(Spend, repay) on each card type.  

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

4. Lists are commonly used to store ordered set of elements having frequent insertions 

and deletions. Create a class to represent a singly linked list of integers. 

class SinglyList 

{ 

   Node * head; 

   void create(); 

   void display(); 

   void insert(int num); 

   void delete(int pos); 

}; 

 

The Node class has data members info and next to  

class Node 

{ 



Page 47 of 50 

 

   int info; 

   Node *next; 

}; 

 Write a menu driven program to perform operations on the singly linked list. Use 

concept of friend class. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

5. Roman Numerals are commonly used in numbering chapters and are frequently used in 

old literature. Implement a class ‘RomanNumeral’ which stores the RomanNumeral as a 

string and also its decimal value. Write a private member function to convert Roman 

number to decimal and vice versa. Overload the parameterized constructor, the argument 

can be string representing Roman numeral or integer representing its decimal value. 

Overload the arithmetic operators +, * so that arithmetic operations can be performed on 

Roman Numbers. Perform the operations on the decimal representation and then convert 

it to Roman numeral form Overload, the pre and post decrement and increment operators. 

Overload relational operators <, >, <=,  > = and = to compare the Roman numbers. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

6. Implement a class stockObject that captures various characteristics of a stock. The 

main components of a stock are the stock symbol, stock price, number of shares, opening 

price, closing price, high price, low price, previous price, and % loss/gain for the day and 

all this information should be stored in a stock object. 

Function members should be provided to perform the following operations 

a. Set the stock information 

b. Print the stock information 

c. Calculate percent gain/loss 

d. Display the different prices 

e. Natural listing for stock listing is by stock symbol(alphabetical ordering). Overload 

the relational operators to compare two stock objects by their symbols. 

f. Overload the insertion operator << for easy output 

g. The data is usually stored in file in the following format 

Symbol openingprice closingprice todayhigh todaylow prevolume numberofshares 

For example sample data is  

MSMT 112.50 115.75 116.50 111.75 113.50 6723823 

CBA 67.50 75.50 78.75 67.50 65.75 378233 

Overload the stream extraction operator for easy input 



Page 48 of 50 

 

Write a program that reads the data from the file into an array of stock objects, sorts and 

prints them. 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

 

7.  A complex number c = a + bi consists of two parts, the real part a and the imaginary 
part bi, where i2 = -1, with i the square root of -1. We can perform arithmetic operations (+, 
-, *, /, or addition, subtraction, multiplication, and division) on complex numbers: 
+: (a1 + b1j) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i 
-: (a1 + b1j) – (a2 + b2i) = (a1 – a2) + (b1 – b2i) 
*: (a1 + b1i) * (a2 + b2i) = (a1a2 – b1b2) + (a1b2 + a2b1) i 
/: (a1+b1i) / (a2 + b2i) = (a1 + b1i) * (a2 – b2i) / (a22 + b22) 
= [(a1a2 + b1b2) + (a2b1 – a1b2)i] / (a22 + b22) 

In polar representation a complex number z is represented by two parameters r and Θ. 

Parameter r is the modulus of complex number and parameter Θ is the angle with the 

positive direction of x-axis, thus  z= r(cos θ+isinθ). The partial class declaration is given 

below. 

class complex { 

private: 
double rP; // real part 
double iP; // imaginary part 
double rad; // radius 
double angle ; // argument 

public: 

complex (double real=0.0, imaginary=0.0); //constructor with default arguments 
complex (complex&); // copy constructor 
complex  operator + (const complex &); 
complex operator – (const complex 7); 
complex operator * (const complex 7); 
complex operator / (const complex 7); 
double getPolarRadius(); 
double getPolarAngle(); 
void displayPolar(); 
…. 
} 

Overload insertion and extraction operators. Also overload comparison and assignment 

operator.  

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 



Page 49 of 50 

 

8. Define a class which represents a file object as shown below and overload operators to 

perform file operations: 

class MyFile 

{ 

    fstream file; 

    char *filename; 

    ....... 

}; 

Operators : 

<<   display contents of file 

>>  write data to file  

+  concatenate one file to another 

-  intersection of two files 

<   >   == compare two files 

=  copy one file to another 

[] display specific character from file 

Assignment Evaluation 

0: Not Done [ ]    1: Incomplete [ ]    2: Late Complete [ ] 

3: Needs Improvement [ ]   4: Complete [ ]    5: WellDone [ ] 

  



Page 50 of 50 

 

Attachment List 

1. employee.txt 

2. cities.txt 

3. dictionary.txt 

4. doc1.txt 

5. doc2.txt 

6. stock.txt 

 

Bibliography 

1. Fundamentals of Computer Algorithms – By Ellis Horowitz, Sartaz Sahnj and 

Sanguthevar Rajasekaran  

2.Introduction to algorithms – By Thomas Cormen , Charles Leiserson and Ronald Rivest 

3. Data structures using C Lab Book – By Madhuri Ghanekar, A. S. Bachav, Smita 

Ghorpade, G. S. Marane and Sonali Ghule 

4. Data Structures and Algorithm Analysis in C++ -  By Mark Allen Weiss 

5. Let us C++ - By Yashvant Kanetkar 

6. C++ Programming Language – By D. S. Malik 

7. Object Oriented Concepts and Programming in C++ Lab Book – By Manisha 

Suryavanshi, Madhuri Ghanekar, S. G. Lakhdive , Parag Tamhankar and Manisha Jagdale 

8. C++ Programming- A practical approach – By Madhusudan Mothe 

9. C/C++ Programming manual – By Tim Lin and Saeed Monemi 


