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ABSTRACT

In thisspaper a pseudo-differential operator P,(x,D) in
terms of a svmbol having broad range of values than the
operators defined previously and the inverse Hankel
transforni of the symbol is defined The boundedness of the
pseudo-differential operator in ceriain Sobolev-type space
with Hankel transform is also established.
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1.ZINTRODUCTION

The Hankel-tvpe transformation of ¢ € L' (1), ] = (0,%) is
defined by

(Hop)(x) = [ Cey) ™), cem) o)y /2 dy, xel (1)

where  (xy) ™/, (xy)y"/ “represents the kernel of this
transforination. as usual. /, is the Bessel function of the
first kind and order p. We shall assume that u > —1/2.
Since (x)™),(x)is bounded on I. the Hankel-type
transformation (H,@)(x) is bounded on I provided
fol x# 2 () |dx < o

Also we get, (H,¢9)(0) = z—ur—(],,lﬁ J‘o/ o)y 2 dy.

The inversion formula for (1) is given by
plx) = [ ey ™, ey) Hup )y dy. xel (2).

Altenberg [5] introduced the space = consisting of all
infinitely differentiable functions ¢ defined on I= (0,:2),

such that for all m, keN, the quantities
Yk = Supy; (1 + x| (x~ d /dx) ()] < o
Zaidman [12] studied a class of pseudo-differential

operators (p.d.o's) using Schwartz's theory of Fourier
transformation. Pseudo-differential operators associated to

i
i

a numerical valued symbol a(x,y) were discussed by
Pathak and Prasad [10], Singh and Prasad [2]. In the
investigation of the pseudo-differential operator P(x,D)
depending on the transformation H, it assumes that the
symbol a(x,y) posses derivatives which satisfy certain
growth conditions, as follows:

*Hy o) = [ Gy) ™, Cey)aCe, y)H, o 0)y* /2 dy, xel
Where (H, ) (x) = [, (x) ™), ) ()y* /2 dy, xel.

From [8] the symbol a(x,y) is defined to be the complex
valued infinitely differentiable functions on $l\times I$
which satisfy

|(x' D) (r~'D )P alx, y)| < €O al (1 +
)™ Va,p € Ny and m is a fixed real number. The class
of all such svmbols is defined by ™. From [10] we know
that for any @, € H

k

- kYo e i
D) ) = ) () @D e D) Y.
v=0
In this paper we have used the Hankel transformation

defined by (1) to develop a theory of pseudo-differential
operator associated with Bessel operator corresponding to
[2,11].

2. HE HANKEL CONVOLUTION

We use the tollowing results on Hankel convolution in the
sequel of A(x,y,z) from Zemanian [1]. Let A(x,y,2) be
the area of triangle with sides x,y,z if such a triangle
exists. For u > 0, set

D(x.y,z) = 23 (m) [T (u + 1)*] X

(I(u + 1/2)") (xyz) 2 [A(x, y, 2)]*?

If = exists and zero otherwise. We note that D(x,y,2) =0
and that D(x,y, z)is symmetric in x,y,z and we have
Jo J@OD(,y, 2)Ydu(2) = j(xt)j(yt)
where
du(z) = [T (u + 1)]_12“/2dz
and

jlx) = 2720 (% 1)x ], ().
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